Which of the following relation cannot be deduced using dimensional analysis? [the symbols have their usual meanings]

  • A

    All of these

  • B

    $v=u+ at$

  • C

    $k=\frac{1}{2} m v^2$

  • D

    $y=A \sin (\omega t+k x)$

Similar Questions

A dimensionally consistent relation for the volume V of a liquid of coefficient of viscosity ' $\eta$ ' flowing per second, through a tube of radius $r$ and length / and having a pressure difference $P$ across its ends, is

Frequency is the function of density $(\rho )$, length $(a)$ and surface tension $(T)$. Then its value is

Given below are two statements: One is labelled as Assertion $(A)$ and other is labelled as Reason $(R)$.
Assertion $(A)$ : Time period of oscillation of a liquid drop depends on surface tension $(S)$, if density of the liquid is $p$ and radius of the drop is $r$, then $T = k \sqrt{ pr ^{3} / s ^{3 / 2}}$ is dimensionally correct, where $K$ is dimensionless.
Reason $(R)$: Using dimensional analysis we get $R.H.S.$ having different dimension than that of time period.
In the light of above statements, choose the correct answer from the options given below.

  • [JEE MAIN 2022]

To find the distance $d$ over which a signal can be seen clearly in foggy conditions, a railways engineer uses dimensional analysis and assumes that the distance depends on the mass density $\rho$ of the fog, intensity (power/area) $S$ of the light from the signal and its frequency $f$. The engineer find that $d$ is proportional to $S ^{1 / n}$. The value of $n$ is:

  • [IIT 2014]

The $SI$ unit of energy is $J=k g\, m^{2} \,s^{-2} ;$ that of speed $v$ is $m s^{-1}$ and of acceleration $a$ is $m s ^{-2} .$ Which of the formulae for kinetic energy $(K)$ given below can you rule out on the basis of dimensional arguments ( $m$ stands for the mass of the body ):

$(a)$ $K=m^{2} v^{3}$

$(b)$ $K=(1 / 2) m v^{2}$

$(c)$ $K=m a$

$(d)$ $K=(3 / 16) m v^{2}$

$(e)$ $K=(1 / 2) m v^{2}+m a$